Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Point Theorems for Nonlinear Dynamical Systems and Their Applications

We present some new critical point theorems for nonlinear dynamical systems which are generalizations of Dancš-Hegedüs-Medvegyev’s principle in uniform spaces and metric spaces by applying an abstract maximal element principle established by Lin and Du. We establish some generalizations of Ekeland’s variational principle, Caristi’s common fixed point theorem for multivalued maps, Takahashi’s no...

متن کامل

Periodic Solutions of Second Order Hamiltonian Systems

We provide sufficient conditions for the existence of periodic solutions of the second order Hamiltonian system −x′′ − λx = εV ′ x (t, x) , where ε is a small parameter, x ∈ R and V (t, x) is 2π-periodic in t. Moreover we provide two applications.

متن کامل

New existence and multiplicity theorems of periodic solutions for non-autonomous second order Hamiltonian systems

In the present paper, the non-autonomous second order Hamiltonian systems { ü(t) = ∇F(t, u(t)), a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, (1) are studied and a new existence theorem and a new multiplicity theorem of periodic solutions are obtained. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Dynamic Systems and Applications 18 (2009) 621-636 PERIODIC SOLUTION FOR NON-AUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS ON TIME SCALES

As is well known, it is very difficult to use the Hilger’s integral to consider the existence of periodic solutions of some second order Hamiltonian systems on time scales since it is only concerned with antiderivatives. Therefore, in this paper, we use a new integral on time scales T defined by Rynne (J. Math. Anal. Appl. 328 (2007) 1217–1236), and establish a new existence result for periodic...

متن کامل

Critical Point Theorems concerning Strongly Indefinite Functionals and Applications to Hamiltonian Systems

Let X be a Finsler manifold. We prove some abstract results on the existence of critical points for strongly indefinite functionals f ∈ C1(X ,R) via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under a new version of Cerami-type condition instead of Palais-Smale condition. As applications, we prove the existence of multiple pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2010

ISSN: 0022-0396

DOI: 10.1016/j.jde.2009.11.007