Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Critical Point Theorems for Nonlinear Dynamical Systems and Their Applications
We present some new critical point theorems for nonlinear dynamical systems which are generalizations of Dancš-Hegedüs-Medvegyev’s principle in uniform spaces and metric spaces by applying an abstract maximal element principle established by Lin and Du. We establish some generalizations of Ekeland’s variational principle, Caristi’s common fixed point theorem for multivalued maps, Takahashi’s no...
متن کاملPeriodic Solutions of Second Order Hamiltonian Systems
We provide sufficient conditions for the existence of periodic solutions of the second order Hamiltonian system −x′′ − λx = εV ′ x (t, x) , where ε is a small parameter, x ∈ R and V (t, x) is 2π-periodic in t. Moreover we provide two applications.
متن کاملNew existence and multiplicity theorems of periodic solutions for non-autonomous second order Hamiltonian systems
In the present paper, the non-autonomous second order Hamiltonian systems { ü(t) = ∇F(t, u(t)), a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, (1) are studied and a new existence theorem and a new multiplicity theorem of periodic solutions are obtained. c © 2007 Elsevier Ltd. All rights reserved.
متن کاملDynamic Systems and Applications 18 (2009) 621-636 PERIODIC SOLUTION FOR NON-AUTONOMOUS SECOND ORDER HAMILTONIAN SYSTEMS ON TIME SCALES
As is well known, it is very difficult to use the Hilger’s integral to consider the existence of periodic solutions of some second order Hamiltonian systems on time scales since it is only concerned with antiderivatives. Therefore, in this paper, we use a new integral on time scales T defined by Rynne (J. Math. Anal. Appl. 328 (2007) 1217–1236), and establish a new existence result for periodic...
متن کاملCritical Point Theorems concerning Strongly Indefinite Functionals and Applications to Hamiltonian Systems
Let X be a Finsler manifold. We prove some abstract results on the existence of critical points for strongly indefinite functionals f ∈ C1(X ,R) via a new deformation theorem. Different from the works in the literature, the new deformation theorem is constructed under a new version of Cerami-type condition instead of Palais-Smale condition. As applications, we prove the existence of multiple pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2010
ISSN: 0022-0396
DOI: 10.1016/j.jde.2009.11.007